
Introduction

Although there is uncertainty in terms of rate

of change, the earth’s climate is undoubtedly

being perturbed through global warming.

This is confirmed by past records showing

the close correlation between the temperature

changes (globally, an increase of 0.5 deg. C
over the last century) and altering CO2
concentration. To be more specific, ultimate

temperature increases on land seem likely to

be within the range of 3-6 deg C in winter

and 2-4 deg. C in summer (Houghton et al.,

1996). The main cause of climate change is

the production of greenhouse gases (released

into the atmosphere through the use of fossil

fuels), of which carbon dioxide constitutes at

least half. This phenomenon has been

accelerated by deforestation (particularly

tropical) and rangelands overgrazing (mainly

temperate), although these effects are not

comparable with the increase due to fossil

fuels in this century.

Various definitions may be given for climate,

climate variability and climate change.

However, the distinction between

“variability” and “change” is clear in

principle, though it is not easy to apply in

practice. Generally, the term ‘climate

change’ is used when there is significant

long-term change in the mean of a climate

variable, whereas, ‘climate variability’ refers

to natural variation from year to year. 

General Circulation Models (GCMs) are in

principle the most appropriate tools for

predicting climate change as they provide

estimates of the hydro-climatological

balance. However, because these estimates

are integrated over spatial gridsquares of

some 300km, they are not appropriate for use

on a smaller, catchment scale. This is also

true for the temporal scale, since although

GCMs operate in short time steps, the rainfall

intensities are estimated uniformly over a

large spatial scale (see e.g. Osborn, 1996,

1998). GCM  results can therefore at most

provide only general tendencies, and their

usefulness is limited when compared to the
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needs of water resource analyses. 

Various approaches have been developed to

study the response of catchments to the

climate change in order to extract hydrologic

information at the catchment scale through

rainfall data. An example is devising a

variety of nesting schemes from GCM results

such as Limited Area Meteorological (LAM)

models, Macroscale Hydrologic Models

(MHM), or sub-grid parameterisations

(Loaiciga, et al., 1996).

This nesting approach uses a much higher

resolution model nested within a GCM. For

example, a small region such as Western

Europe is selected and a Regional Climate

Model (RCM), with grid size of 50 km or

smaller is run (e.g. McGregor et al., 1993 in

Australia). However, the RCM is still

conditioned by the GCM boundary

conditions,  and computational expense

dictates that simulations cannot be performed

over long periods.

In another approach to the sub-grid scale

method used by Wigley et al. (1990), the

downscaling approach is based on statistical

linkages between the local and large scale

climate (von Storch, et al., 1993). The main

assumption here is that orographic and

geographic (land/sea contrast) factors are

responsible for local scale variations. The

effects of these factors can then be estimated

by regression relationships between local and

large-scale climate parameters. The statistical

linkages are assumed to remain valid as far as

the future climate is concerned, and so future

hydrological scenarios for any spatial scale

can be predicted by using GCM scenarios

and the regression relationships obtained

from observed data. This procedure has an

advantage over the nested modelling

approach due to the ease with which various

methods can be tested and the speed with

which long simulations may be generated.

Future climate prediction is subject to many

uncertainties as far as policy responses in

controlling the emission of CO2 in all parts

of the world are concerned. Numerous

scenarios have been developed based on

various annual rates of CO2  increase up to

the year 2100 (Houghton et al., 1996).  In

recent years, efforts have been made to

construct catchment scale climate scenarios

using downscaling methodologies employing

GCM outputs such as weather circulation

indices and temperature rather than using

rainfall directly from GCM outputs (Kilsby

et al., 1998). Therefore, a statistical

downscaling approach constitutes the main

element of the scenario construction

methodology used for impact assessment.

With this approach, time series of sufficient

duration to represent long-term variability,

including extreme events and droughts,

which control the reliability of water

resource systems, can be generated. This

approach to scenario construction will be

demonstrated here at the daily time-scale and

catchment space-scale. 

The objective in this paper is to assess the

impacts of climate change on generated daily

rainfall series for a small catchment. That is

to generate and validate rainfall sequences

using an stochastic model, which can account

for climate change using modified

parameters; for present/control conditions of

climate. Then, to generate control and future

climate scenarios using the stochastic model

of rainfall fitted above. Sequences of rainfall

can then be routed to a rainfall-runoff model

for water resources impact assessments (this

is not investigated here). The results obtained

for future scenarios are compared with

corresponding values for the control

scenarios.
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Catchment and Available Data

General Catchment Description

Kassilian catchment in the north of Iran was

adopted as the focus of this study. The study

catchment has minimal human influence (no

reservoirs) and relatively accurate data.

Figure 1 shows a map of the catchment and

the main drainage network. It has an area of

approximately 66.75 square kilometres at

Valikbon outlet. The average annual rainfall

for the period of 1976-88 is around 844

millimetres. The catchment has a humid

temperate climate with precipitation evenly

distributed through the year. The contribution

of snowmelt to precipitation for the study

catchment is generally insignificant.

Data Sets

Historic series of daily rainfall was available

for a period of twelve years (1/10/1976-

31/9/1988). Daily rainfall data were available

as weighted mean of 5 stations distributed

over the area of the catchment. Statistical

information for the study catchment is

summarised in Table 1.

The justification for using data for the this

period for the study is as follows: the

apparent increase in variability and extreme

events in next years has provided some

doubts for climate change in more recent

years. Therefore, the 1990s and later may be

more affected by global warming than the

previous years (pre-1988 period). In order
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Figure 1. The study catchment and its location in Iran
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not to take the risk of the existence of the

recent probable climate change in the

observed data, it was considered preferable

to use the earlier record (previous-1988) for

analysis. 

Methodology Used for Impact Assessment

Compare to various daily rainfall models

used in literature for fitting to observed

rainfall data and then simulation, the selected

model for this study should be able to fulfil

two objectives. 1- The model should be able

to reflect physical characteristics of

atmosphere relatively which affects weather

moisture and then rainfall conditions. 2- The

model structure should be able to

accommodate a downscaling approach in

order to use regional GCM data to a

catchment scale as small as Kassilian.

Regarding the 1st objective, there is an

extensive literature on daily and shorter

period rainfall modelling (for example

Foufoula-Georgiou and Krajewski (1995)).

For daily rainfall, two broad categories of

model have been employed: discrete time

series models and point process models. The

former uses a discrete time increment (e.g. a

day or an hour) whilst the point process

models use a continuous time model for the

occurrence of rainfall events, which

characterises indirectly the wet and dry

periods, and to describe the random amounts

of rainfall associated with the wet periods.

Regarding the former, a typical category of

models is ARMA models. Of the point

process models, the Neyman-Scott models

(White Noise or Rectangular Pulses) have

shown to be at least as good as other models

(Wilby, 2001). These models, compare to the

well-known rainfall models such as Markov

chain models, can therefore, reflect relatively

physical characteristics of atmosphere which

affects weather moisture and then rainfall

conditions. This provides a context for

accommodating those physical

characteristics that can then be used for

reflecting the change of rainfall in future

condition. As regards to the 2nd objective,

the downscaling approach uses regression

relationships between atmospheric

circulation indices (ACIs) and rainfall

statistics. The relationships are then used to

predict the rainfall statistics for future

conditions using GCM outputs. Having

selected the rainfall model, the methodology

is summarised as:

(a) to fit the selected model to observed data

(that present climate condition), 

(b) to use the fitted model to generate hourly

rainfall data using a random generator

scheme and then aggregated to daily values, 

(c) to validate the generated data against

historic values employing a 2 stage scheme, 

(d) Having validated for present condition, to

use the model to generate future rainfall data

employing the downscaling approach

explained in below. 

The Neyman-Scott Rectangular Pulses

(NSRP) model has been used for this study

International Journal of Civil Engineering. Vol.4 No.1  March 2006 45

Statistics Mean (mm) Std (mm) 

Daily 2.31 5.20 

Annual  844.0 144.54 

Table 1. Data summary for rainfall data (1976-88) consisting of means, standard deviations  at daily and annual aggregation
levels
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(Rodriguez-Iturbe et al., 1987; Cowpertwait,

1991a; Cowpertwait et al., 1996) for the

following reasons: 

(a) It has a realistic physical structure. This

makes the interpretation of the parameters of

the model easier, 

(b) It preserves historic rainfall statistics at

various levels of aggregation (hourly and

above), 

(c) It requires only 5 parameters to be

estimated. This simplifies the parameter

estimation procedure, and 

(d) Its parameters can easily be re-estimated

in a perturbed climate by using the relevant

perturbed statistics, which are functions of

GCM outputs.

Rainfall Modelling for Present Climates

Model Calibration

The NSRP model uses a clustered process for

the arrival of rain-cells (Cowpertwait,

1991a). The parameters are: 1/l = mean time

between storm origins (hour), 1/b = mean

waiting time for cells after the storm origin

(hour), n = mean number of rain cells per

storm, 1/h = mean cell duration (hour), and

1/z = mean cell intensity (mm/hour). To deal

with seasonality, the NSRP parameters are

estimated separately for each month. 

The fitting procedure, based on daily rainfall,

involves estimating the five parameters of the

NSRP model through minimising the

following sum of squares function:

(1)

where l,b,h,z> 0 , and n >1;

fi Lfi (l,b.h.n,z) is  a  model  function

that defines a particular model statistic (see

Rodriguez-Iturbe et al. (1987) and

Cowpertwait (1991a)) and is its estimated

statistic from the historical rainfall data; m
refers to the number of moments which is

taken to be equal to or greater than the

number of parameters. The weights (wi)
allow greater weight to be given in fitting

some statistics. Here an arbitrary value of

wi=10 is chosen for the term relating to the

mean daily rainfall and value of wi=1 is

applied to the remaining statistics. In

practice, finding a value close to zero for S is

the aim.

The average values of the following statistics

of  the observed 12 years of continuous daily

rainfall time series, provided as the average

of a number of point values for the

catchment, were  derived for each calendar

month: 

(i) daily mean, (M24),

(ii) daily variance, (V24), 

(iii) proportion of dry days, (PD), 

(iv) proportion of dry days preceded by a dry

day, (PDD), and 

(v) proportion of wet days preceded by a wet

day, (PWW).

The model parameters were then fitted using

a quasi-Newton algorithm for finding the

minimum of the objective function, subject

to fixed upper and lower bounds on the

independent parameters. 

Data Generation and Validation

The model parameter estimates (60

parameter estimates in total, 5 for each

month) were considered to be physically

realistic. The fitted model was then used to

generate rainfall data which reproduced key

daily rainfall statistics (mean, variance,

probability of dry days, wet and dry
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transition probabilities). The generated data

were validated using a two stage approach

explained below.

1st validation stage

Statistical resemblance to the daily historic

rainfall record is checked. That is, preserving

statistics which were implicitly designed for

(i.e. mean, variance, autocorrelation and

skewness coefficient of daily rainfall). In this

respect, the basic statistics were in

reasonable agreement. In addition to that, the

approach should produce sequences which

reflected the observed structure at various

aggregation levels e.g. monthly and annual.

This also more or less has been fulfilled.

Therefore, it was considered that the

generated rainfall data were in satisfactory

agreement with the observed data (see Table

3 as historic and present climate lines to be

compared).

2nd validation stage

As indicated, the model reproduced the five

chosen statistics fairly well, but the

reproduction of other statistics is not usually

guaranteed. Testing the model’s ability to

reproduce rainfall properties not used in the

fitting procedure, but of practical importance,

is a necessity for the final stage of validation.

For example, in drought situations, a

reproduction of the lengths of dry spells and

of their frequencies may be regarded as

important. So dry spell lengths can be

employed as a guide in the related decision-

making. In view of the intended use of the

rainfall model, which can be for water

resources impact studies associated with

climate change, a validation test was carried

out for this stage. That is, the frequencies of

occurrences of dry days or the distribution of

the number of consecutive dry spell

sequences were calculated and compared. In

this respect, a year was divided into four

seasons: January, February and March; April,

May and June; July, August, and

September; and October, November

and December. The number of occurrences

of a sequence of n dry days is found for

both 25 generated series and the

historic series over the 12 year period.

That is, the number of times that

only one day separated rainy days

is counted and this process is repeated for

two days, three days and so forth

until the longest dry run is counted. The

results of this comparison, between the

historic values and the corresponding

statistics for 25 sequences (in terms of,

means, mean + standard deviation, and mean

- standard deviation) are presented in Figure

2. It was found for season 3 that the model

reproduced the historical dry spell sequences

well, except for very short dry sequences,

which were over-estimated. Moreover, the

mean number for the very long dry sequences

in the generated series is somewhat under-

estimated. The longest historic dry spell

sequence is also 23 days; while longer spells

were observed in the generated series.

The overall results showed the generated

rainfall data reflected the corresponding

historic statistics satisfactorily and the

rainfall model could be adopted with

sufficient confidence to assess the impacts of

climate change for the study catchment.

Scenario construction

Downscaling approach

Regression relationships between

atmospheric circulation indices (ACIs) and

two rainfall statistics, monthly-mean daily

rainfall (MDR) and proportion of dry days
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(PD) were taken as the basis for downscaling

GCM outputs to the catchment scale and then

for re-estimating the NSRP model

parameters. Additionally the 24 hour

variance (VAR24) was used in re-estimation,

obtained as described below. Although it

would be desirable to use downscaled

estimates of other statistics, this is not

currently possible (e.g. Murphy, 2000).

However, MDR and PD are considered able

to capture the most important changes.

The regression approach of Kilsby et al.

(1998) was used to estimate the statistics for

both control (CON) and perturbed (SUL)

rainfall transient scenarios using Hadley

Centre GCM outputs of atmospheric

variables with the cooling effects of aerosols

included (Mitchell et al., 1995). The

predictor variables used are three

independent ACIs such as mean pressure (P),

zonal flows (U) and meridional flow (V) all

derived from observed or GCM grids of

mean sea level pressure (MSLP). The

following relations for the expected values of

MDR and PD at site i, year j, and month k,

denoted MDRijk, and PDijk, respectively,

were established: 

(2)

(3)

where rm, in Equation 2, is a correction ratio

to allow for the bias resulting from

retransformation from ln(MDR) to MDR in

model fitting, and rp, in Equation 3, is again

a correction ratio for the retransformation

bias.

Values of the regression coefficients (U, V,

and P) and correction ratios (r), together with

the coefficients of determination (R2),

derived using ACI, site and point rainfall data
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for the region, are given in Table 2. 

The regression relations were then used to

estimate MDR and PD values using the

HADCM2 GCM outputs for control (CON)

and perturbed future (SUL) scenarios. The

results for CON and SUL conditions in

addition to the observed statistics usually

show that some discrepancies between the

GCM control rainfall statistics and the

observed rainfall statistics are evident due to

the inability of the GCM to reproduce

regional climate patterns accurately (for

details see Kilsby et al., 1998). To avoid

these discrepancies in deriving future (FUT)

statistics, a standardisation scheme was

adopted to incorporate the changes to

observed values using the statistics of the

CON and SUL GCM experiments. That is, on

a monthly basis, relative changes of the two

rainfall statistics, denoted FUTMDR and

FUTPD, were estimated by multiplying the

ratio of the statistic of the perturbed (SUL)

GCM scenario and the statistic of the control

(CON) GCM scenario by the corresponding

observed statistic:

The assumptions in the above approach are

that the present day frequency of weather

types and circulation patterns will be

changed as a result of climate change, but

that each weather type will retain its

associated precipitation characteristics.

Rainfall Generation for Future Condition

Future rainfall statistics, denoted

FUT(GCM), were obtained as described

above, but using the corresponding

catchment historic rainfall statistics. This

approach is particularly useful when the

discrepancies between the historic data and

control scenarios are significant. In this

respect, these discrepancies are considered to

have come from two sources: 

(i) the inability of the GCM to reproduce

satisfactorily the behaviour of the present

climate and (ii) the relationships derived for

predicting MDR and PD from atmospheric

and physiographic variables relate to rainfall

at a point, whereas the historic statistics for

the study catchment relates to average

catchment rainfall. 

The parameters of the NSRP model were re-

estimated using the predicted (FUT) values

of MDR and PD calculated from above

equation as well as the variance (VAR).

Regarding the VAR, it was assumed that

VAR would increase under future conditions

as the mean increases, i.e. that the coefficient

of variation (CV) will remain constant. The

other possible assumption is that VAR would

remain constant, i.e. CV would be dependent

on mean. For a strict choice between these

International Journal of Civil Engineering. Vol.4 No.1  March 2006 49

Statistics Constants

) α0 0 وβ(

U

)αU و Uβ(

V

)αV و Vβ(

P

)αP و Pβ(

r R2

MDR 73.5 0.0051 -0.00418 -0.80230 1.130 0.33

PD -96.1 -0.0078 -0.00214 0.11265 0.787 0.46

Table 2. Values of regression coefficients and goodness of fit for MDR and PD

valueObserved
valueCON

valueSUL
valueFUT 
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assumptions, there is insufficient information

currently available and, therefore, this is an

area subject to further research. Here, the

statistics of the variance (VAR) for future

GCM conditions, i.e. FUT(GCM), were

obtained for each month using the statistics

of MDR for future GCM conditions and the

CVs of present conditions (historic values) as

follows.

where, i =1,2,...,12. (4)

Two NSRP parameters were then re-

estimated;  x (the mean cell intensity) and l

(the rate of storm arrival) using MDR, PD

and VAR; the other three parameters (b, n,

and h) were assumed to remain constant in

the future climate and remained fixed in the

re-estimation procedure. The two re-

estimated parameters are the most

appropriate, since there is a direct

relationships between the parameters and

these statistics defined in the rainfall model

structure (for the analytical relationships

between the statistics and parameters see

Rodriguez-Iturbe et al. (1987) and

Cowpertwait (1991a)). Furthermore, since

only small changes are predicted in the

NSRP model parameters, and no major

changes are evident in the dominant

precipitation mechanism (Kilsby et al.,

1998), the assumption that some of the NSRP

model parameter estimates remain constant is

reasonable.

Results and Discussions

The NSRP model with the re-estimated

(FUT) parameters was used to generate an

ensemble of 25 synthetic series of daily

rainfall data, each of the same length as the

historic series (12 years). The ensemble

average MDR and PD values, i.e. FUT(SIM),

are shown in Figure 3 together with MDR

and PD of historical values.

The statistics of MDR when compared with

the historic values indicate an significant

increase in January and March (months 4,

and 6, respectively). The results for MDR in

this figure follow more or less the pattern

(but not the magnitude) of the historic

statistics. The statistic of PD again follows

the pattern of the historic one and not the

magnitude, as significant decreases are

evident here for 2 or three months. 

Moreover, results for a number of statistics

such as mean, variance, lag-one

autocorrelation coefficient (L1Acc), and

skewness coefficient (SC)) of ensembles of

25 generated series for present and future

climates are shown in Table 3 together with

the historic counterparts at daily, aggregated

monthly, and aggregated annual levels. In

this table, generally, the mean values show an

overall increase in rainfall amount of around

6% mainly in January and March (see Fig. 3).

This is moreover true for the monthly and

annual aggregation level. However,

significant increases in daily as well as

monthly variances are noted. The increase in

annual variance is around 28%.

The results suggest wetter conditions in the

study catchment, particularly during the

winter season, consistent with the results of

other studies performed elsewhere (Hulme

and  Jenkins, 1998). The rainfall regime is

also expected to be more variable.

Conclusion

A Neyman-Scott Rectangular Pulses model

has been applied to areal average of daily

rainfall data for Kassilian catchment. A

model fitting procedure has been employed:
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one based on the use of statistics such as

daily mean, daily variance, proportion of dry

days, proportion of dry days given the

previous day dry, and proportion of wet days

given the previous day wet, denoted as M24,

V24, PD, PDD, and PWW, respectively. PD

and PDD statistics were selected in this study

due to their potential capability for low flow

simulations as they use daily transition

probabilities within the fitting procedure.

That is because, they give an appropriate

model fit to the historic dry spell sequences

as far as the validation procedure is

concerned. The conclusions are summarised

as: 1- When dealing with NSRP modelling

for rainfall generation, various fitting

schemes may be chosen with various fitting

results obtained. However, the appropriate

rainfall modelling and fitting scheme should

be selected on the basis of the intended

application of generated series; the selected

scheme may not be as good as other schemes

as far as discrepancies between standard

historic and fitted statistics are concerned,

but should perform satisfactorily in

reproducing the rainfall characteristics to
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Figure 3. Summary statistics (MDR and PD) for 25 simulated sequences (FUT(SIM)) compared to historic (HIS)
forKassilian catchment rainfall (Oct.=Month 1)
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which a water resource system is sensitive. 2-

A rainfall model fitting procedure which uses

wet and dry period transition probabilities is

an appropriate candidate on the grounds of its

potential capability for low flow simulation

in climate impact assessment studies. 3- The

overall results obtained showed rainfall data

are projected to be increased with higher

magnitude of the winter season. 4- A cascade

of uncertainties from emissions, GCM,

downscaling to small spatial scales exist that

should be addressed in further studies before

using generated rainfall data as input to a

system catchment rainfall-runoff model for

generating streamflow values in water

resources impact assessment.
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